Search results for "Circuit design"
showing 10 items of 13 documents
Analysis of bias-shift effects in free-running and injection-locked negative resistance oscillators
2012
In this paper, the interaction between DC and RF in quasi-sinusoidal free-running and injection-locked oscillators is addressed. To account for and illustrate in a user-friendly manner the bias-shift related effects stemming from such interaction, a frequency-domain method of analysis has been developed for a rather wide class of negative-resistance circuits. Grounding on a first-approximation exact perturbation-refined approach, it permits computationally efficient simulation of the oscillator behavior directly in terms of the DC and RF signals evolutions (dynamical complex envelopes). In fact, it allows the investigation of both steady-state and transient operation of the shifting-bias dr…
Optimal implementation of neural activation functions in programmable logic using fuzzy logic
2006
Abstract This work presents a methodology for implementing neural activation function in programmable logic using tools from fuzzy logic. This methodology will allow implementing these intrinsic non-linear functions using comparators and simple linear modellers, easily implemented in programmable logic. This work is particularized to the case of a hyperbolic tangent, the most common function in neural models, showing the excellent results yielded with the proposed approximation.
Design and simulation of efficient combinational circuits based on a new XOR structure in QCA technology
2021
AbstractQuantum-dot cellular automata (QCA), due to its unique characteristics like low power consumption, nanoscale design, and high computing speed is considered as an emerging technology, and it can be used as an alternative for CMOS technology in circuit design for quantum computers in the near future. XOR gate has many applications in the design of digital circuits in QCA. In this paper, an efficient novel structure of XOR gate is proposed in QCA. Also, a novel 1-bit comparator circuit, 1-bit full adder, binary to gray and gray to binary convertor code based on the proposed XOR is designed and simulated using QCADesigner 2.0.3. The simulation results demonstrated that the proposed stru…
Improving topological mapping on NoCs
2010
Networks-on-Chip (NoCs) have been proposed as an efficient solution to the complex communications on System-on-chip (SoCs). The design flow of network-on-chip (NoCs) include several key issues, and one of them is the decision of where cores have to be topologically mapped. This thesis proposes a new approach to the topological mapping strategy for NoCs. Concretely, we propose a new topological mapping technique for regular and irregular NoC platforms and its application for optimizing application specific NoC based on distributed and source routing.
Coherence resonance in Bonhoeffer-Van der Pol circuit
2009
International audience; A nonlinear electronic circuit simulating the neuronal activity in a noisy environment is proposed. This electronic circuit is exactly ruled by the set of Bonhoeffer-Van Der Pol equations and is excited with a Gaussian noise. Without external deterministic stimuli, it is shown that the circuit exhibits the so-called 'coherence resonance' phenomenon.
Fast automated design of waveguide filters using aggressive space mapping with a new segmentation strategy and a hybrid optimization algorithm
2005
Waveguide filters are key elements present in many microwave and millimeter-wave communication systems. In recent times, ever-increasing efforts are being devoted to the development of automated computer-aided design (CAD) tools of such devices. In this paper, a novel CAD tool based on modal analysis methods, which improves the efficiency and robustness of the classical aggressive space-mapping technique, is presented for those purposes. The use of a new segmentation strategy and the hybridization of a specific combination of several well-known optimization algorithms is proposed. The CAD tool has been successfully validated with the practical design of several H-plane coupled cavity filter…
Reconfigurable digital instrumentation based on FPGA
2004
A novel application of FPGA to realize digital test equipment is proposed. It takes advantage of the dynamic reconfigurability of FPGAs so easily tailoring custom test functions in the same instrument. This results in high effective, compact and low cost instruments.
A Design Methodology for Low-Power MCML Ring Oscillators
2007
In this paper, a low-power design method for MCML based ring oscillators is presented. The proposed method takes into account the parasitic capacitances of the MOS transistors. To validate it, some ring oscillators with different oscillation frequencies were designed in a 0.18 mum CMOS technology. SPICE simulations demonstrate the effectiveness of the design method.
A low power interface circuit design for a CMOS based smart optical sensor
2012
In this paper, a CMOS interface circuit as part of an optical sensor-based microsystem for pH monitoring applications is presented. The proposed circuit is capable of processing a voltage signal produced by the light transducer and generating 8-bit digital outputs representing the color information (i.e. wavelength). A resolution of 8 different colors has been achieved as a proof of concept and can easily be extended to a higher number of colors without a major modification in the architecture. The proposed interface circuit is a mixed-signal solution that consists of analog as well as digital building blocks along with a light transducer. It can be used as a portable and non-intrusive opti…
A Methodology for the Design of MOS Current-Mode Logic Circuits
2010
In this paper, a design methodology for the minimization of various performance metrics of MOS Current-Mode Logic (MCML) circuits is described. In particular, it allows to minimize the delay under a given power consumption, the power consumption under a given delay and the power-delay product. Design solutions can be evaluated graphically or by simple and effective automatic procedures implemented within the MATLAB environment. The methodology exploits the novel concepts of crossing-point current and crossing-point capacitance. A useful feature of it is that it provides the designer with useful insights into the dependence of the performance metrics on design variables and fan-out capacitan…